Remarkable preservation of Ca2+ homeostasis and inhibition of apoptosis contribute to anti-muscle atrophy effect in hibernating Daurian ground squirrels

نویسندگان

  • Weiwei Fu
  • Huanxin Hu
  • Kai Dang
  • Hui Chang
  • Bei Du
  • Xue Wu
  • Yunfang Gao
چکیده

The underlying mechanisms that hibernators deviated from muscle atrophy during prolonged hibernating inactivity remain elusive. This study tested the hypothesis that the maintenance of intracellular Ca(2+) homeostasis and inhibition of apoptosis would be responsible for preventing muscle atrophy in hibernating Daurian ground squirrels. The results showed that intracellular Ca(2+) homeostasis was maintained in soleus and extensor digitorum longus (EDL) in hibernation and post-hibernation, while cytosolic Ca(2+) was overloaded in gastrocnemius (GAS) in hibernation with a recovery in post-hibernation. The Ca(2+) overload was also observed in interbout arousals in all three type muscles. Besides, the Bax/Bcl-2 ratio was unchanged in transcriptional level among pre-hibernation, hibernation and interbout arousals, and reduced to a minimum in post-hibernation. Furthermore, the Bax/Bcl-2 ratio in protein level was reduced in hibernation but recovered in interbout arousals. Although cytochrome C was increased in GAS and EDL in post-hibernation, no apoptosis was observed by TUNEL assay. These findings suggested that the intracellular Ca(2+) homeostasis in hibernation might be regulated by the cytosolic Ca(2+) overload during interbout arousals, which were likely responsible for preventing muscle atrophy via inhibition of apoptosis. Moreover, the muscle-specificity indicated that the different mechanisms against disuse-induced atrophy might be involved in different muscles in hibernation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Na+/Ca2+ Exchanger Activity Promotes Resistance to Excitotoxicity in Cortical Neurons of the Ground Squirrel (a Hibernator)

Ground squirrel, a hibernating mammalian species, is more resistant to ischemic brain stress than rat. Gaining insight into the adaptive mechanisms of ground squirrels may help us design treatment strategies to reduce brain damage in patients suffering ischemic stroke. To understand the anti-stress mechanisms in ground squirrel neurons, we studied glutamate toxicity in primary cultured neurons ...

متن کامل

Stable atrogin-1 (Fbxo32) and MuRF1 (Trim63) gene expression is involved in the protective mechanism in soleus muscle of hibernating Daurian ground squirrels (Spermophilus dauricus)

Understanding the mechanisms that protect against or limit muscle atrophy in hibernators during prolonged inactivity has important implications for its treatment. We examined whether external factors influence the pathways regulating protein synthesis and degradation, leading to muscle atrophy prevention in Daurian ground squirrels (Spermophilus dauricus). We investigated the effects of 14-day ...

متن کامل

Ca2+ Cycling in Heart Cells from Ground Squirrels: Adaptive Strategies for Intracellular Ca2+ Homeostasis

Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca(2+) homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiolog...

متن کامل

Impaired Skeletal Muscle Regeneration in the Absence of Fibrosis during Hibernation in 13-Lined Ground Squirrels

Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes t...

متن کامل

Myosin isoform expression and MAFbx mRNA levels in hibernating golden-mantled ground squirrels (Spermophilus lateralis).

Hibernating mammals present many unexplored opportunities for the study of muscle biology. The hindlimb muscles of a small rodent hibernator (Spermophilus lateralis) atrophy slightly during months of torpor, representing a reduction in the disuse atrophy commonly seen in other mammalian models. How torpor affects contractile protein expression is unclear; therefore, we examined the myosin heavy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016